Partial Faction Decomposition

Academic Resource Center
Table of Contents

1. What is Partial Fraction Decomposition
2. Finding the Partial Fraction Decomposition
3. Examples
4. Exercises
5. Integration with Partial Factions
6. Example
7. Exercises
8. Resources
What is Partial Fraction Decomposition

• This technique should be used to take a single fraction and separate it into the sum of simpler fractions
• This is can be used to simplify a term for taking the derivative
• This also works to simplify a term for integration
Finding the Partial Fraction Decomposition

Consider a rational function

\[f(x) = \frac{P(x)}{Q(x)} \]

where \(P \) and \(Q \) are polynomials. It’s possible to express \(f \) as a sum of simpler fractions, assuming \(P \) has a smaller degree than \(Q \). If \(P \) has a larger degree than \(Q \) we must first divide \(P \) by \(Q \) so as to get a remainder \(R(x) \), which would produce the following equation:

\[f(x) = S(x) + \frac{R(x)}{Q(x)} \]
Example 1

Simplify \(\frac{x^3 + x}{x - 1} \)

Since the top has a higher power than the bottom we must do long division first

\[
x - 1 \bigg| x^3 + 0 \times x^2 + x + 0
\]

\[
x^3 - x^2
\]

\[
x^2 + x
\]

\[
x^2 - x
\]

\[
2x + 0
\]

\[
2x - 2
\]

\[
\frac{x^3 + x}{x - 1} = x^2 + x + 2 + \frac{2}{x - 1}
\]
Finding the Partial Fraction Decomposition

The next step in partial fraction decomposition is to factor $Q(x)$ as much as possible. Then express $R(x)/Q(x)$ as a sum of partial fractions of the form

\[
\frac{A}{(ax + b)^i} \quad \text{or} \quad \frac{Ax + B}{(ax^2 + bx + c)^j}
\]

These steps can be broken down into 4 cases.
Case I: Q(x) is a product of distinct linear factors

This means that Q(x) can be rewritten as the following

\[Q(x) = (a_1 x + b_1)(a_2 x + b_2) \cdots (a_k x + b_k) \]

This means that \(\frac{R(x)}{Q(x)} \) can be rewritten as the following

\[\frac{R(x)}{Q(x)} = \frac{A_1}{a_1 x + b_1} + \frac{A_2}{a_2 x + b_2} + \cdots + \frac{A_k}{a_k x + b_k} \]
Example 2

Simplify \(\frac{x^2 + 2x - 1}{2x^3 + 3x^2 - 2x} \)

First we must factor Q(x)

\[
2x^3 + 3x^2 - 2x = x(2x^2 + 3x - 2) = x(2x - 1)(x + 2)
\]

Now our factor can be rewritten as follows

\[
\frac{x^2 + 2x - 1}{2x^3 + 3x^2 - 2x} = \frac{A}{x} + \frac{B}{2x - 1} + \frac{C}{x + 2}
\]
Example 2 cont.

To determine the values of A, B, and C, we multiply both sides by $x(2x-1)(x+2)$ which results in the following

$$x^2 + 2x - 1 = A(2x - 1) + Bx(x + 2) + Cx(2x - 1)$$

After expanding and rewriting the equation we obtain

$$x^2 + 2x - 1 = (2A + B - C)x^2 + (3A + 2B - C)x - 2A$$
Example 2 cont.

Since the polynomials are identical, there coefficients must be equal. This gives us the following system of equations

\[2A + B + 2C = 1\]
\[3A + 2B - C = 2\]
\[-2A = -1\]

Solving this we get the following equation for our original function

\[
\frac{x^2 + 2x - 1}{2x^3 + 3x^2 - 2x} = \frac{1}{2} + \frac{1}{5} \frac{1}{2x - 1} - \frac{1}{10} \frac{1}{x + 2}
\]
Case II: $Q(x)$ is a product of linear factors, some of which repeat

Suppose that $Q(x)$ is the product of one linear factor, r times. This means that $Q(x)$ can be rewritten as the following

$$Q(x) = (a_1x + b_1)^r$$

This means that $R(x)/Q(x)$ can be rewritten as the following

$$\frac{R(x)}{Q(x)} = \frac{A_1}{a_1x + b_1} + \frac{A_2}{(a_1x + b_1)^2} + \cdots + \frac{A_r}{(a_1x + b_1)^r}$$
Example 3

Simplify \(\frac{x^4 - 2x^2 + 4x + 1}{x^3 - x^2 - x + 1} \)

The first step is long division resulting in the following

\[
\frac{x^4 - 2x^2 + 4x + 1}{x^3 - x^2 - x + 1} = x + 1 + \frac{4x}{x^3 - x^2 - x + 1}
\]

The next step is to factor \(Q(x) \) giving us the following

\[
x^3 - x^2 - x + 1 = (x - 1)(x^2 - 1) = (x - 1)(x - 1)(x + 1)
\]
Example 3 cont.

Now our \(\frac{R(x)}{Q(x)} \) can be rewritten as follows

\[
\frac{4x}{x^3 - x^2 - x + 1} = \frac{A}{x - 1} + \frac{B}{(x - 1)^2} + \frac{C}{x + 1}
\]

Next we solve for \(A, B, \) and \(C \) and get our solution

\[
4x = A(x - 1)(x + 1) + B(x + 1) + C(x - 1)^2
\]

\[
= (A + C)x^2 + (B - 2C)x + (-A + B + C)
\]

\[
A + C = 0 \quad A = 1
\]

\[
B - 2C = 4 \quad B = 2
\]

\[
-A + B + C = 0 \quad C = -1
\]

\[
\frac{x^4 - 2x^2 + 4x + 1}{x^3 - x^2 - x + 1} = x + 1 + \frac{1}{x - 1} + \frac{2}{(x - 1)^2} - \frac{1}{x + 1}
\]
Case III: $Q(x)$ contains irreducible quadratic factors, which do not repeat.

Suppose that $Q(x)$ has a factor ax^2+bx+c which cannot be factored, then, in addition to the partial factors, $R(x)/Q(x)$ will have a term of the form

\[
\frac{Ax + B}{ax^2 + bx + c}
\]
Example 4

Simplify \(\frac{2x^2 - x + 4}{x^3 + 4x} \)

Since \(x^3 + 4x = x(x^2 + x) \) cannot be factored, we write

\[
\frac{2x^2 - x + 4}{x(x^2 + 4)} = \frac{A}{x} + \frac{Bx + C}{x^2 + 4}
\]

By multiplying both sides by \(x(x^2 + 4) \) we get

\[
2x^2 - x + 4 = A(x^2 + 4) + (Bx + C)x
\]

\[
= (A + B)x^2 + Cx + 4A
\]
Example 4 cont.

Now solving for A, B, and C we get

\[A + B = 2 \quad C = -1 \quad 4A = A \]
\[A = 1, B = 1, \text{and} \quad C = -1 \]

So we see that our function reduces to this

\[
\frac{2x^2 - x + 4}{x^3 + 4x} = \frac{1}{x} + \frac{x - 1}{x^2 + 4}
\]
Case IV: Q(x) contains a repeated irreducible quadratic factor

Suppose that Q(x) has a factor \(ax^2+bx+c\) which cannot be factored and is repeated \(r\) times, then, in addition to the partial factors, \(R(x)/Q(x)\) will have a terms of the form

\[
\frac{A_1x + B_1}{ax^2 + bx + c} + \frac{A_2x + B_2}{(ax^2 + bx + c)^2} + \cdots + \frac{A_rx + B_r}{(ax^2 + bx + c)^r}
\]
Example 5

Simplify \(\frac{1 - x + 2x^2 - x^3}{x(x^2 + 1)^2} \)

The form of the partial fraction decomposition is

\[
\frac{1 - x + 2x^2 - x^3}{x(x^2 + 1)^2} = \frac{A}{x} + \frac{Bx + C}{x^2 + 1} + \frac{Dx + E}{(x^2 + 1)^2}
\]

By multiplying both sides by \(x(x^2 + 1)^2 \) we get

\[
-x^3 + 2x^2 - x + 1 = A(x^2 + 1)^2 + (Bx + C)x(x^2 + 1) + (Dx + E)x
\]

\[
= A(x^4 + 2x^2 + 1) + B(x^4 + x^2) + C(x^3 + x) + Dx^2 + Ex
\]

\[
= (A + B)x^4 + Cx^3 + (2A + B + D)x^2 + (C + E)x + A
\]
Example 5 cont.

Now solving for A, B, C, D, and E we get

\[A + B = 0 \quad C = -1 \quad 2A + B + D = 2 \quad C + E = -1 \quad A = 1 \]
\[A = 1, B = -1, C = -1, D = 1, \text{ and } E = 0 \]

So we see that our function reduces to this

\[
\frac{1 - x + 2x^2 - x^3}{x(x^2 + 1)^2} = \frac{1}{x} - \frac{x + 1}{x^2 + 1} + \frac{x}{(x^2 + 1)^2}
\]
Exercises

Find the partial fractions for the following but not the coefficients

1. \(\frac{1}{x^3 + 2x^2 + x} \)

2. \(\frac{x^4 + 1}{x^5 + 4x^3} \)

3. \(\frac{t^4 + t^2 + 1}{(t^2 + 1)(t^2 + 4)^2} \)
Answers

1. \[\frac{A}{x} + \frac{B}{x+1} + \frac{C}{(x+1)^2} \]

2. \[\frac{A}{x} + \frac{B}{x^2} + \frac{C}{x^3} + \frac{Dx+E}{x^2+4} \]

3. \[\frac{At+B}{t^2+1} + \frac{Ct+D}{t^2+4} + \frac{Et+F}{(t^2+4)^2} \]
Integration with Partial Fractions

Partial fraction decomposition is useful in integration when the term that you are integrating is a function such that can be written as the division of two polynomials.
Example 6

Let's try to integrate the function in Example 3

\[
\int \frac{x^2 + 2x - 1}{2x^3 + 3x^2 - 2x} \, dx = \int \left(\frac{1}{2x} + \frac{1}{5(2x - 1)} - \frac{1}{10(x + 2)} \right) \, dx
\]

\[
= \frac{1}{2} \int \frac{1}{x} \, dx + \frac{1}{5} \int \frac{1}{2x - 1} \, dx - \frac{1}{10} \int \frac{1}{x + 2} \, dx
\]

\[
= \frac{1}{2} \ln|x| + \frac{1}{10} \ln|2x - 1| - \frac{1}{10} \ln|x + 2| + C
\]
Exercises

1. \(\int_{2}^{3} \frac{1}{x^2 - 1} \, dx \)

2. \(\int_{1}^{2} \frac{4y^2 - 7y - 12}{y(y+2)(y-3)} \, dy \)

3. \(\int \frac{10}{(x-1)(x^2 + 9)} \, dx \)
1. \(\frac{1}{2} \ln\left(\frac{3}{2}\right) \)

2. \(\frac{27}{5} \ln(2) - \frac{9}{5} \ln(3) \)

3. \(\ln|x - 1| - \frac{1}{2} \ln(x^2 + 9) - \frac{1}{3} \tan^{-1}(x/3) + C \)
Resources

• Calculus, Chapter 8.4
• http://mathworld.wolfram.com/PartialFractionDecomposition.html