CHE 302
Fall 2012

Course Title: Heat and Mass Transfer Operations

Instructor: Nader Aderangi
Phone: (312) 567-7046
E-mail: aderangi@iit.edu
Office Hours: M 2:00 to 3:00 PM

TA David Nietosimavilla
Email: dnietosi@hawk.iit.edu

Description: Fundamentals of heat and mass transfer. Heat and mass transfer design equations as applied to selected unit operations. Mass transfer in stage-wise and continuous contacting equipment. Unsteady state operations in mass transfer equipment. Prerequisite: CHE 301. (3-0-3).

Lecture hours: TR 11:25 AM to 12:40 PM

Course Goals:
1- To gain an understanding of the principles of mass and heat transfer phenomena.
2- To apply principles of mass and heat transfer to analysis and design of unit operation systems.

Evaluation: Based on 1 test, midterm exam, and final exam, homework, and computer project.

<table>
<thead>
<tr>
<th>EFFORT</th>
<th>POINTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midterm</td>
<td>25 points</td>
</tr>
<tr>
<td>Tests (1)</td>
<td>25 each</td>
</tr>
<tr>
<td>Final</td>
<td>30</td>
</tr>
<tr>
<td>Homework (10-12 sets)</td>
<td>10</td>
</tr>
<tr>
<td>Quizzes (5)</td>
<td>5</td>
</tr>
<tr>
<td>Computer Projects (1)</td>
<td>5</td>
</tr>
</tbody>
</table>
Total 100

The better of the grades of the Test and Midterm will be used with a 50% wt. in class grade calculations.

Grade:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>90% of points</td>
<td>90 - 100</td>
</tr>
<tr>
<td>B</td>
<td>80%</td>
<td>80 - 90</td>
</tr>
<tr>
<td>C</td>
<td>70%</td>
<td>70 - 80</td>
</tr>
<tr>
<td>D</td>
<td>60%</td>
<td>60 - 70</td>
</tr>
</tbody>
</table>

If class average falls below 60% on any test/exam, standard curving will be done.

Homework Policy:

* by 5:15 PM on due date - full credit
* One day after due date - 70% off
* More than one day late - no credit

Exams:

All exams and tests will be open book/notes. Final exam will not be cumulative.

NO RETAKES OF THE TESTS/ FINAL ALLOWED.

MAKE-UP TEST/ EXAM ALLOWED FOR PERSONAL EMERGENCIES ONLY

Quizzes:

Unannounced, both open and closed book. No make-up for missed quizzes.

Course Outline

1- Basic mechanisms of heat transfer
2- Heat Conduction
 Fourier’s law
 Thermal conductivity
 Steady state energy balance with conduction only
 a- rectangular coordinate system
 b- Cylindrical coordinate system
 c- Spherical coordinate system
 Conduction through materials in series and parallel
 Contact resistance
 Conduction with inside heat generation
3- Forced convection heat transfer
 Heat transfer coefficient
 Correlations for heat transfer coefficient
 Overall heat transfer coefficient and log mean temperature difference
4- Natural convection heat transfer
 Heat transfer coefficient correlations
5- Boiling and condensation
6- Heat Exchangers
 Configurations
 a- parallel
b- countercurrent
c- cross-flow
d- multi-pass

Fouling factors and typical overall U values
Finned surface heat exchangers

7- Basic mechanisms of mass transfer, analogy and differences with heat transfer
8- Molecular Diffusion
 Fick’s law
 Molecular diffusion plus convection- special cases
 Diffusion in different geometries in one dimension
 Steady state multidimensional molecular diffusion
 Molecular diffusivity –Experimental methods and prediction
9- Convective mass transfer
10- Convective mass transfer coefficient
 Dimensionless groups and correlations
11- General balance equation for mass transfer
12- Application to reactive systems
13- Knudsen diffusion
14- Separation processes
 Stagewise and Continuous contactors
 Absorption in a trayed column-Kremeser equations
 Absorption in a packed column
 Humidification in packed columns-cooling tower process calculations and design
 Membrane separation of gases and liquids
15- Term project

Student Learning Objectives (SLOs):
Upon completion of this course, students will be able to:
1. Determine material balance in systems involving molecular diffusion.
2. Apply Fick’s law to dilute and concentrated systems under steady state conditions for various geometry.
3. Predict binary diffusivity in different phases from the available theories and correlations.
4. Calculate interfacial equilibrium concentrations for transport of material from one phase to another.
5. Derive material and energy balance equations for packed bed humidification and drying processes.
6. Use the analytical methods of Kremser to determine number of equilibrium stages in dilute separation processes for binary systems.
7. Design membrane systems for separation of gases, reverse osmosis, and ultra-filtration.
8. Understand basic concepts in heat transfer such as energy, heat, thermal conductivity and temperature.
10. Be able to calculate heat transfer coefficients for pipe flow and understand the physical significance of the Nusselt number.
11. Be able to apply integral thermal energy balance in conjunction with empirical correlations for heat transfer coefficients in the design and analysis of heat exchangers.
12. Be able to formulate and solve linear ordinary differential equations that are relevant to unit operations involving heat transfer.

Course Relationship to CHE program Educational Objectives:
This intermediate level course contributes to the CHE program objectives & outcomes as follows:
Outcome II: Students learn fundamentals of mass and heat transfer. This outcome is supported by SLOs 1 to 4 and 8-10.
Outcome III: Students develop engineering judgment and gain experience related to design of unit operation processes. This outcome is supported by SLOs 5 thru 7 and 11.
Outcome IV: Students use spreadsheets and other engineering software for data analysis and presentation. This outcome is supported by SLO 7.
Outcome IX: The entire ChE curriculum is designed to instill in the students a yearning for the pursuit of “Life Long Learning”, and the skills necessary for it. Each course achieves this goal by various means. The assessment plan for this outcome is currently under development, data are continually being collected to
assess the whole range of methodologies that are used in this regard. All data collected will be used by the outcome XI assessment committee (in Year 3) to formulate future metrics.