

RECENT ADVANCES IN CO₂ STORAGE SCIENCE Professor Sally M. Benson Department of Energy Resources Engineering School of Earth, Energy, and Environmental Sciences Stanford University

Topics

1. Why CCUS

- 2. How does CO₂ storage work?
- 3. Flow and trapping of CO_2 in heterogeneous rocks

https://scripps.ucsd.edu/ programs/keelingcurve/ wp-content/plugins/siobluemoon/graphs/mlo_fu II_record.png

The Global Carbon Budget

2,900 GtCO₂ for 66% chance of achieving less than 2°C warming

Today, we have used up about 2,000 Gt of that budget.

Emissions from fossil fuel use and industry

□ Global emissions from fossil fuel and industry: 35.9 ± 1.8 GtCO₂ in 2014, 60% over 1990.
 Projection for 2015: 35.7 ± 1.8 GtCO₂, 59% over 1990

About 4% per Year Reductions in Emissions Will be Needed to Limit Warming to 2° C

By 2050, About 75% Reduction in Emissions will be Required Across the Global Economy

CCUS Can Reduce Emissions from Many Sources

- CCS is applicable to the 60% of global CO₂ emissions which come from stationary sources such as coal and natural gas power plants, cement plants, steel plants, hydrogen production, and refineries.
- About 85% lifecycle emissions reductions when applied
- Could provide net negative emissions, which are likely to be required, by combining biomass energy with CCS.

2. What is CO₂ Storage and Why Does it Work?

Carbon Dioxide Capture and Storage Involves 4 Steps

Options for Geological Storage

Cross Section of Typical Sedimentary Basin

Northern California Sedimentary Basin

Example of a sedimentary basin with alternating layers

¹³ of coarse and fine textured sedimentary rocks.

Prospectivity for Storage Around the World

From Bradshaw and Dance 2005

Image courtesy of ISGS and MGSC

homogeneous

reservoir

Basic Concept of Geological Storage of CO₂

~1 - 10 km

- Injected at depths of 1 km or deeper into rocks with tiny pore spaces
- Primary trapping
 - Beneath seals of low permeability rocks

injection stops

Courtesy of John Bradshaw

X-Ray micro-tomography showing droplets of CO₂ in the rock (ALS, LBNL)

Micro-tomography Beamline

Image of Rock with CO₂

50 micron droplets

Secondary Trapping Mechanisms Increase Storage Security Over Time

- Solubility trapping
 CO₂ dissolves in water
- Residual gas trapping
 - CO₂ is trapped by capillary forces
- Mineral trapping
 - CO₂ converts to solid minerals
- Adsorption trapping
 CO₂ adsorbs to coal

Sleipner Project, North Sea

Seismic Monitoring Data From Sleipner, Norway

From Chadwick et al., GHGT-9, 2008.

CCS Continues to Expand Worldwide

DeConninck and Benson, 2014. Annual Reviews in Energy and Environment.

CO₂ Storage Safety and Security Pyramid

Financial	
Responsibility	
Regulatory Oversight	
Contingency Planning	
and Remediation	
Monitoring	
Risk Assessment and Safe Operations	
Storage Engineering	
Capacity Assessment, Site Characterization,	
and Selection	
Fundamental Storage	

and Leakage Mechanisms

3. Flow and trapping of CO_2 in heterogeneous rocks

How do small scale heterogeneities influence flow and trapping in reservoir rocks?
 Implications of small scale heterogeneity for field scale projects?

J. C. Perrin and **S.M. Benson** (2010), An Experimental Study on the Influence of Sub-Core Scale Heterogeneities on CO₂ Distribution in Reservoir Rocks, Transport in Porous Media.

S. C. Krevor, R. Pini, B. Li, and S. M. Benson (2011), Capillary heterogeneity trapping of CO₂ in a sandstone rock at reservoir conditions, *Geophys. Res. Lett.*, 38, L15401, doi:10.1029/2011GL048239.

R. Pini, S.C. R. Krevor, and **S. M. Benson**, 2012. Capillary pressure and heterogeneity for the CO₂/water system in sandstone rocks at reservoir conditions, Advances in Water Resources 38 (2012) 48–59.

Krause, M., Krevor, S., & Benson, S. M. (2013). A procedure for the accurate determination of sub-core scale permeability distributions with error quantification. *Transport in porous media*, *98*(3), 565-588.

Kuo, C. W., & Benson, S. M. (2015). Numerical and Analytical Study of Effects of Small Scale Heterogeneity on CO₂/Brine Multiphase Flow System in Horizontal Corefloods. *Advances in Water Resources*.

Li, B., & Benson, S. M. (2015). Influence of small-scale heterogeneity on upward CO 2 plume migration in storage aquifers. Advances in Water Resources, 83, 389-404.

Pini, R., Vandehey, N. T., Druhan, J., O'Neil, J. P., & Benson, S. M. (2016). Quantifying solute spreading and mixing in reservoir rocks using 3-D PET imaging. *Journal of Fluid Mechanics*, 796, 558-587.

Multiphase Flow of CO₂ and Brine

Core-Flood Visualization Lab

Continuous Flow Core-Flooding Apparatus

Examples of Typical Heterogeneity in Reservoir Rocks

Porosity

SCO,=29.5%

Capillary Pressure Curve Heterogeneity Causes CO₂ Saturation Variations

Unique capillary pressure curves are needed to create spatial variations in CO₂ saturation.

C-W Kuo, J-C Perrin, and S. M. Benson, 2011. Simulation studies of the effect of flow rate and small scale heterogeneity on multiphase flow of CO_2 and brine. Energy Procedia 4 (2011) 4516–4523.

Permeability Distributions

Capillary Heterogeneity Can be Measured Using the Stationary Fluid Method

Capillary Heterogeneity in Berea Sandstone

- 1. Increased capillary trapping efficiency
- 2. Stabilization of gravity dominated displacements
- 3. Flowrate dependence of multiphase displacements

Heterogeneity Increases Trapping

Krevor, S. C. M., R. Pini, B. Li and S. M. Benson, Capillary heterogeneity trapping of CO2 in a landstone rock at reservoir conditions, GEOPHYSICAL RESEARCH LETTERS, VOL. 38, L15401, 5 PP., 2011. doi:10.1029/2011GL048239

Macroscopic Invasion Percolation Simulations for Predicting Capillary Heterogeneity Trapping

From Cindy Ni, PhD student, Stanford University

Degree of Heterogeneity Increases Trapping

33

From Cindy Ni, PhD student, Stanford University

Influence of Fine Scale Heterogeneity on Buoyancy Driven Flow

Capillary Heterogeneity Counteracts the Influence of Gravity

Disregarding Heterogeneity Overestimates Buoyancy Driven Plume Migration

Upscaling Relative Permeability In the Capillary Limit

Critical CO₂ Saturation is a Function of Heterogeneity

Capillary Limit Upscaling Provides Good Estimates of CO₂ Transport

Capillary Limit Upscaling Provides Good Estimates of Buoyancy Driven Transport

Capillary Heterogeneity Has a Large Influence on Flow and Trapping in Reservoir Rocks

- 1. Increased capillary trapping efficiency
- 2. Stabilization of gravity dominated displacements
- 3. Flowrate dependence of multiphase displacements

CCUS Is an Important CO₂ Emissions Reduction Technology

Source: IEA, 2010.

CCUS: Many Important and Interesting Scientific Challenges

Financial Responsibility	
Regulatory Oversight	
 Contingency Planning and Remediation	
Monitoring	
Risk Assessment and Safe Operations	
Storage Engineering	
Capacity Assessment, Site Characterization	
and Selection	
Fundamental Storage	

and Leakage Mechanisms

3. Pressure transient data leakage detection

Under what conditions and how accurately can above-zone pressure monitoring detect, locate, and quantify leakage?
 How many wells do you need?

Cameron, D. A., Durlofsky, L. J., & Benson, S. M. (2016). Use of above-zone pressure data to locate and quantify leaks during carbon storage operations. *International Journal of Greenhouse Gas Control*, *52*, 32-43.

Above-Zone Pressure Monitoring

Stochastically Generated Geological Model

 $k_{x} = \exp\left\{a + b\left(\frac{\phi - \overline{\phi}}{\sigma_{\phi}}\right)\right\}$

25 x 25 x 13 grid cells Grid Cells: 460 x 460 x 12 m Conditioned to "well data" Two-point geostatistics

Leak data	True 1	True 2	True 3	True 4	True 5
Leak location (<i>i</i> , <i>j</i>) ^{leak}	(14, 5)	(17, 5)	(13, 21)	(10, 15)	(12, 9)
Fluid leakage (30 years)	0.0031	0.0054	0.085	0.083	0.078
F ³⁰ fluid					
CO ₂ leakage (500 years) F ⁵⁰⁰ _{CO2}	0.0086	0.033	0.075	0.13	0.23
Leak permeability k_z^{leak}	0.0074	0.023	55	3.3	0.50
(md)					

Simulations with Eclipse CO2STORE

□ 150 Mt injection over 30 years

□ 5 leakage cases

Impermeable seal except for leak

Data Assimilation With a Stochastically Generated Permeability Fields

- Permeability fields generated with SgeMS
- Particle Swarm Optimization
- Minimize misfit to the above-zone pressure monitoring data
- Models fit the pressure data closely (see example on the right of one well)

Good Leakage Quantification is Possible With As Little As 12 Months of Data

9 wells

Good CO₂ Leakage Quantification is Possible With As Little As 12 Months of Data

What If You Have Fewer Wells?

More Than 4 Monitoring Wells Provides Little Improvement

1 well 2 wells 3 wells 4 wells 9 wells

Fluid Leakage Quantification Is Good Even with a Few Wells

CO₂ Leakage Quantification Is Good Even with a Few Wells

Above-Zone Monitoring For Leak Detection and Quantification

- Above-zone pressure monitoring is a promising tool for leak detection
- Data assimilation techniques provide good estimates of leak location, rate, and ultimate CO₂ leakage over 500 years
 - ✤ Leakage rates ranging from <1% to 25% over 500 years</p>
 - Location to within ~ 0.5 km
- Four wells will single level pressure monitoring with a year of monitoring data are adequate in this case

CCUS: Many Important and Interesting Scientific Challenges

Financial Responsibility	
Regulatory Oversight	
 Contingency Planning and Remediation	
Monitoring	
Risk Assessment and Safe Operations	
Storage Engineering	
Capacity Assessment, Site Characterization	
and Selection	
Fundamental Storage	

and Leakage Mechanisms